Statistics 3

Exercise 3A

1 i a $\sum X_{i} \sim \mathrm{~N}\left(10 \mu, 10 \sigma^{2}\right)$
b $\frac{2 X_{1}+3 X_{10}}{5} \sim \mathrm{~N}\left(\mu, \frac{13}{25} \sigma^{2}\right),\left(\frac{13}{25}=\frac{2^{2}+3^{2}}{5^{2}}\right)$
c $\mathrm{E}\left(X_{i}-\mu\right)=0 \quad \operatorname{Var}\left(X_{I}-\mu\right)=\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$
$\therefore \sum\left(X_{i}-\mu\right) \sim \mathrm{N}\left(0,10 \sigma^{2}\right)$
d $\bar{X}=\frac{\sum X_{i}}{n} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{10}\right) \quad(n=10)$
e $\sum_{i=1}^{5} X_{i}-\sum_{i=6}^{10} X_{i} \sim \mathrm{~N}\left(5 \mu, 5 \sigma^{2}\right)-\mathrm{N}\left(5 \mu, 5 \sigma^{2}\right)$
\therefore combined distribution $\sim \mathrm{N}\left(0,10 \sigma^{2}\right)$
$[$ Remember $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)]$
f $\frac{X_{I}-\mu}{\sigma} \sim \mathrm{N}\left(0,1^{2}\right) \therefore \sum\left(\frac{X_{i}-\mu}{\sigma}\right) \sim \mathrm{N}(0,10)$
ii $\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$ are statistics since they do not contain μ or σ, the unknown population parameters.

2 a $X=$ value of a coin.

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{1 0}$
$\mathrm{P}(X=x)$	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{1}{5}$

$\therefore \mu=\mathrm{E}(X)=\frac{2}{5}+\frac{10}{5}+\frac{10}{5}=\frac{22}{5}$ or 4.4
$\mathrm{E}\left(X^{2}\right)=1^{2} \times \frac{2}{5}+25 \times \frac{2}{5}+100 \times \frac{1}{5}=\frac{152}{5}$
$\therefore \sigma^{2}=\mathrm{E}\left(X^{2}\right)-\mu^{2}=\frac{152}{5}-\frac{22^{2}}{25}=11.04$ or $\frac{276}{25}$
b $\{1,1\} \quad\{1,5\}^{\times 2}\{1,10\}^{\times 2}$
$\{5,5\} \quad\{5,10\}^{\times 2}$
$\{10,10\}$

2 c

$\overline{\boldsymbol{x}}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{5 . 5}$	$\mathbf{7 . 5}$	$\mathbf{1 0}$
$\mathrm{P}(\bar{X}=\bar{x})$	$\frac{4}{25}$	$\frac{8}{25}$	$\frac{4}{25}$	$\frac{4}{25}$	$\frac{4}{25}$	$\frac{1}{25}$

$$
\left[\text { e.g. } \mathrm{P}(\bar{X}=5.5)=\frac{2}{5} \times \frac{1}{5}+\frac{1}{5} \times \frac{2}{5}=\frac{4}{25}\right]
$$

d $\mathrm{E}(\bar{X})=1 \times \frac{4}{25}+3 \times \frac{8}{25}+\cdots+10 \times \frac{1}{25}=4.4=\mu$

$$
\operatorname{Var}(\bar{X})=1^{2} \times \frac{4}{25}+3^{2} \times \frac{8}{25}+\cdots+10^{2} \times \frac{1}{25}-4.4^{2}=5.52=\frac{\sigma^{2}}{2}
$$

3 Unbiased estimate of mean $=\bar{x}=\frac{\sum x}{n}$
Unbiased estimate of variance $=S^{2}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}$
a $\quad \sum x=270.3, \sum x^{2}=5270.49, n=14$
$\therefore \bar{x}=19.3, S^{2}=3.98$
b $\sum x=54, \sum x^{2}=252, n=16$
$\therefore \bar{x}=3.375, S^{2}=4.65$
c $\sum x=2007.4, \sum x^{2}=505132.36, n=9$
$\therefore \bar{x}=223, S^{2}=7174$
d $\sum x=5.833, \sum x^{2}=3.644555, n=10$
$\therefore \bar{x}=0.5833, S^{2}=0.0269$
4 a $\bar{x}=\frac{\sum x}{n}=\frac{4368}{120}=36.4$

$$
\begin{aligned}
S^{2}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}=\frac{162466-120 \times 36.4^{2}}{119} & =29.166 \ldots \\
& =29.2(3 \text { s.f. })
\end{aligned}
$$

b $\bar{x}=\frac{\sum x}{n}=\frac{270}{30}=9$
$S^{2}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}=\frac{2546-30 \times 9^{2}}{29}=4$

4 c $\bar{x}=\frac{\sum x}{n}=\frac{1140.7}{1037}=1.1$

$$
S^{2}=\frac{\sum x^{2}-n \bar{x}^{-2}}{n-1}=\frac{1278.08-1037 \times 1.1^{2}}{1036}=0.0225
$$

d $\bar{x}=\frac{\sum x}{n}=\frac{168}{15}=11.2$

$$
\begin{aligned}
S^{2}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}=\frac{1913-15 \times 11.2^{2}}{14} & =2.24285 \ldots \\
& =2.24(3 \text { s.f. })
\end{aligned}
$$

5 a An unbiased estimator is an estimator of a population parameter that will 'on average' give the correct value.
b $\sum x=1652, \sum x^{2}=389$ 917.48, $n=7$

$$
\begin{aligned}
\therefore \bar{x} & =\frac{1652}{7}=236 \\
S^{2} & =\frac{389917.48-7 \times 236^{2}}{6} \\
& =7.58
\end{aligned}
$$

6 a $\bar{X} \sim \mathrm{~N}\left(10,2^{2}\right)$

$$
\begin{aligned}
\mathrm{P}(\bar{X}>12) & =\mathrm{P}(\bar{X}<8) \\
& =\mathrm{P}\left(Z<\frac{10-8}{\sqrt{\frac{4}{6}}}\right) \\
& =\mathrm{P}(Z<\sqrt{6}) \\
& =0.0072
\end{aligned}
$$

b Sample taken from a population that was normally distributed, so answer is not an approximation.

INTERNATIONAL A LEVEL

7 a $\bar{X} \sim \mathrm{~N}\left(40,1.5^{2}\right)$

$$
\begin{aligned}
\mathrm{P}(\bar{X}>40.5) & =\mathrm{P}(\bar{X}<39.5) \\
& =\mathrm{P}\left(Z<\frac{40-39.5}{\sqrt{\frac{2.25}{4}}}\right) \\
& =\mathrm{P}\left(Z<\frac{2}{3}\right) \\
& =0.2525
\end{aligned}
$$

b $\bar{X} \sim \mathrm{~N}\left(40,1.5^{2}\right)$

$$
\begin{aligned}
\mathrm{P}(\bar{X}>40.5) & =\mathrm{P}(\bar{X}<39.5) \\
& =\mathrm{P}\left(Z<\frac{40-39.5}{\sqrt{\frac{2.25}{49}}}\right) \\
& =\mathrm{P}\left(Z<\frac{7}{3}\right) \\
& =0.0098
\end{aligned}
$$

$8 \sum x=2051.6, \sum x^{2}=420$ 989.26, $n=10$
$\bar{x}=205.16=205$ (3 s.f.)
$S^{2}=\frac{420989.26-10 \times \bar{x}^{2}}{9}$

$$
=9.22266 \ldots=9.22(3 \text { s.f. })
$$

$9 X=$ length of a bolt

\boldsymbol{x}	$\mathbf{5}$	$\mathbf{1 0}$
$\mathrm{P}(X=x)$	$\frac{2}{3}$	$\frac{1}{3}$

a $\quad \mu=5 \times \frac{2}{3}+10 \times \frac{1}{3}=\frac{20}{3}$

$$
\sigma^{2}=25 \times \frac{2}{3}+100 \times \frac{1}{3}-\left(\frac{20}{3}\right)^{2}=\frac{50}{9}
$$

b $\{5,5,5\}$

$$
\begin{aligned}
& \{5,5,10\}^{\times 3} \quad\{5,10,10\}^{\times 3} \\
& \{10,10,10\}
\end{aligned}
$$

9 c

$\overline{\boldsymbol{x}}$	$\mathbf{5}$	$\frac{\mathbf{2 0}}{\mathbf{3}}$	$\frac{\mathbf{2 5}}{\mathbf{3}}$	$\mathbf{1 0}$
$\mathrm{P}(\bar{X}=\bar{x})$	$\frac{8}{27}$	$\frac{12}{27}$	$\frac{6}{27}$	$\frac{1}{27}$

d $\mathrm{E}(\bar{X})=5 \times \frac{8}{27}+\frac{20}{3} \times \frac{12}{27}+\cdots+10 \times \frac{1}{27}=\frac{20}{3}=\mu$
$\operatorname{Var}(\bar{X})=5^{2} \times \frac{8}{27}+\cdots+10^{2} \times \frac{1}{27}-\left(\frac{20}{3}\right)^{2}=\frac{50}{27}=\frac{\sigma^{2}}{3}$
e

\boldsymbol{m}	$\mathbf{5}$	$\mathbf{1 0}$
$\mathrm{P}(M=m)$	$\frac{20}{27}$	$\frac{7}{27}$

$\mathrm{P}(M=10)$ is cases $\{5,10,10\}$ and $\{10,10,10\}$
f $\mathrm{E}(M)=5 \times \frac{20}{27}+10 \times \frac{7}{27}=\frac{170}{27}=6.296 \ldots$
$\operatorname{Var}(M)=25 \times \frac{20}{27}+100 \times \frac{7}{27}-\left(\frac{170}{27}\right)^{2}=\frac{3500}{729}=4.80 \ldots$
g $\operatorname{Bias}=\mathrm{E}(M)-5=1.296 \ldots=1.30$ (3 s.f.)
$10 X \sim B(10, p)$
a $\mathrm{E}(X)=n p=10 p$
b $\bar{X}=\frac{X_{1}+\ldots+X_{25}}{25}$
$\mathrm{E}(\bar{X})=\frac{\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\ldots+\mathrm{E}\left(X_{25}\right)}{25}=\frac{\mu+\mu+\ldots+\mu}{25}=\frac{25 \mu}{25}=\mu$
$\therefore \bar{X}$ is an unbiased estimator of μ
But $\mathrm{E}(\bar{X})=\frac{\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\ldots+\mathrm{E}\left(X_{25}\right)}{25}=\frac{25 \times 10 p}{25}=10 p$
$\therefore \bar{X}$ is a biased estimator of p.
so bias $=10 p-p=9 p$
c $\quad \mathrm{E}\left(\frac{\bar{X}}{10}\right)=\frac{1}{10} \mathrm{E}(\bar{X})=p$
$\therefore \frac{\bar{X}}{10}$ is an unbiased estimator of p.
$11 X \sim \mathrm{U}[-\alpha, \alpha]$
a $\mathrm{E}(X)=\frac{-\alpha+\alpha}{2}=0$
$\operatorname{Var}(X)=\frac{(\alpha-(-\alpha))^{2}}{12}=\frac{4 a^{2}}{12}=\frac{\alpha^{2}}{3}$
μ and σ^{2} for $\mathrm{U}[a, b]$ are given in the formula booklet
$\therefore \mathrm{E}\left(X^{2}\right)=\operatorname{Var}(X)+[\mathrm{E}(X)]^{2}$
$\therefore \mathrm{E}\left(X^{2}\right)=\frac{\alpha^{2}}{3}+0=\frac{\alpha^{2}}{3}$
b $Y=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$

$$
\begin{aligned}
\mathrm{E}(Y) & =\mathrm{E}\left(X_{1}^{2}\right)+\mathrm{E}\left(X_{2}^{2}\right)+\mathrm{E}\left(X_{3}^{2}\right) \\
& =\frac{\alpha^{2}}{3} \times 3=\alpha^{2}
\end{aligned}
$$

$\therefore Y$ is an unbiased estimator of α^{2}.
12 a $\quad \bar{y}=\frac{486}{30}=16.2$
$S_{y}^{2}=\frac{8222-30 \times 16.2^{2}}{29}=12.0275 \ldots=12.0(3$ s.f. $)$
b Let $\sum w=\sum x+\sum y$
$\bar{x}=15.5 \Rightarrow \sum x=15.5 \times 20=310$
$\therefore \sum w=796$
$S_{x}^{2}=8.0 \Rightarrow \sum x^{2}=8 \times 19+20 \times 15.5^{2}=4957$
$\therefore \sum w^{2}=13179$
$\therefore \bar{w}=\frac{796}{50}=15.92$
$S_{w}^{2}=\frac{13179-50 \times 15.92^{2}}{49}=10.340 \ldots=10.34$
c Standard error is a measure of the statistical accuracy of an estimate.
d Standard error of the mean is $\frac{S}{\sqrt{n}}$

$$
\frac{S_{x}}{\sqrt{20}}=0.632 \text { (3 s.f.), } \frac{S_{y}}{\sqrt{30}}=0.633 \text { (3 s.f.), } \frac{S_{w}}{\sqrt{50}}=0.455 \text { (3s.f.) }
$$

e Prefer to use \bar{w} since it is based on a larger sample size and has smallest standard error.

Statistics 3

$$
\begin{aligned}
S_{x}^{2} & =\frac{84685-20 \times 65^{2}}{19} \\
& =9.7368 \ldots=9.74(3 \text { s.f. })
\end{aligned}
$$

b To achieve a standard error less than 0.5 , we require $\frac{\sigma}{\sqrt{n}}=\frac{3}{\sqrt{n}}<0.5$.
Rearranging the right hand side of the above formula, followed by squaring both sides gives an expression for n

$$
\begin{aligned}
& \frac{3}{\sqrt{n}}<0.5 \\
& \sqrt{n}>6 \\
& n>36
\end{aligned}
$$

thus we need a sample of 37 or more.
c No. Because the recommendation is based on the assumed value of s^{2} from the original sample OR the value of s^{2} for the new sample might be different / larger.
d Let $y=$ combined sample

$$
\begin{aligned}
& \sum y=1300+1060 \\
& \sum y=2360 \\
& \therefore \bar{y}=\frac{2360}{36}=65.555 \ldots \text { or } 65.6 \text { (3 s.f.) }
\end{aligned}
$$

$14 \frac{\sigma}{\sqrt{n}}<0.5$

$$
\sigma=2.6 \Rightarrow \sqrt{n}>2.6 \times 2=5.2
$$

i.e. $n>27.04$

So need a sample of 28 (or more)
15a Let $x=$ indentation

$$
\sum x=48.9, \quad \sum x^{2}=239.89, n=10
$$

$$
\hat{\mu}=\bar{x}=\frac{48.9}{10}=4.89
$$

b $\quad \hat{\sigma}^{2}=S^{2}=\frac{239.89-10 \times 4.89^{2}}{9}=0.08544 \ldots$

$$
\frac{S}{\sqrt{n}}=0.092436 \ldots=0.0924 \text { (3 s.f.) }
$$

15c Require $\frac{S}{\sqrt{n}}=\frac{0.2923 \ldots}{\sqrt{n}}<0.05$
$\Rightarrow \sqrt{n}>5.846 \ldots$
$n>34.17 \ldots$
\therefore need $n=35$ (or more)
$16 X_{1} \sim \mathrm{~B}(n, p) \quad X_{2} \sim \mathrm{~B}(2 n, p)$
a $\mathrm{E}\left(X_{1}\right)=n p, \mathrm{E}\left(X_{2}\right)=2 n p, \operatorname{Var}\left(X_{1}\right)=n p(1-p), \operatorname{Var}\left(X_{2}\right)=2 n p(1-p)$
b $\mathrm{E}\left(\frac{X_{1}}{n}\right)=\frac{\mathrm{E}\left(X_{1}\right)}{n}=\frac{n p}{n}=p \therefore \frac{X_{1}}{n}$ is unbiased estimator of p
$\mathrm{E}\left(\frac{X_{2}}{2 n}\right)=\frac{\mathrm{E}\left(X_{2}\right)}{2 n}=\frac{2 n p}{2 n}=p \therefore \frac{X_{2}}{2 n}$ is unbiased estimator of p
Prefer $\frac{X_{2}}{2 n}$ since based on a larger sample (and therefore will have smaller variance)
c $X=\frac{1}{2}\left(\frac{X_{1}}{n}+\frac{X_{2}}{2 n}\right) \Rightarrow \mathrm{E}(X)=\frac{1}{2}\left[\frac{\mathrm{E}\left(X_{1}\right)}{n}+\frac{\mathrm{E}\left(X_{2}\right)}{2 n}\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{n p}{n}+\frac{2 n p}{2 n}\right] \\
& =\frac{1}{2}[p+p]=p
\end{aligned}
$$

$\therefore X$ is an unbiased estimator of p
d $Y=\left(\frac{X_{1}+X_{2}}{3 n}\right) \Rightarrow \mathrm{E}(Y)=\frac{\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)}{3 n}=\frac{n p+2 n p}{3 n}=p$
$\therefore Y$ is an unbiased estimator of p
e $\operatorname{Var}\left(\frac{X_{1}}{n}\right)=\frac{1}{n^{2}} \quad \operatorname{Var}\left(X_{1}\right)=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}$
$\operatorname{Var}\left(\frac{X_{2}}{2 n}\right)=\frac{1}{4 n^{2}} \operatorname{Var}\left(X_{2}\right)=\frac{2 n p(1-p)}{4 n^{2}}=\frac{p(1-p)}{2 n}$
$\operatorname{Var}(X)=\frac{1}{4}\left[\operatorname{Var}\left(\frac{X_{1}}{n}\right)+\operatorname{Var}\left(\frac{X_{2}}{2 n}\right)\right]=\frac{1}{4}\left[\frac{p(1-p)}{n}+\frac{p(1-p)}{2 n}\right]=\frac{3 p(1-p)}{8 n}$
$\operatorname{Var}(Y)=\frac{1}{9 n^{2}}\left[\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)\right]=\frac{1}{9 n^{2}}[n p(1-p)+2 n p(1-p)]$
$\operatorname{Var}(Y)=\frac{3 n p(1-p)}{9 n^{2}}=\frac{p(1-p)}{3 n}$
$\therefore \operatorname{Var}(Y)$ is smallest so Y is the best estimator.
$16 \mathrm{f} T=\left(\frac{2 X_{1}+X_{2}}{3 n}\right)$

$$
\begin{aligned}
\mathrm{E}(T) & =\frac{2 \mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)}{3 n}=\frac{2 n p+2 n p}{3 n}=\frac{4 p}{3} \\
\text { bias } & =\mathrm{E}(T)-p \\
& =\frac{p}{3}
\end{aligned}
$$

17 Let $X=$ number on a counter.

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathrm{P}(X=x)$	0.4	0.2	0.4

a $\mu=1$ (by symmetry)

$$
\sigma^{2}=0+1^{2} \times 0.2+2^{2} \times 0.4-1=0.8 \text { or } \frac{4}{5}
$$

b
$\{0,0,0\}$
$\{0,0,1\}^{\times 3}$
$\{0,0,2\}^{\times 3}$
$\{1,1,1\}$
$\{1,1,0\}^{\times 3}$
$\{1,1,2\}^{\times 3}$
$\{2,2,2\}$
$\{2,2,0\}^{\times 3}$
$\{2,2,1\}^{\times 3}\{0,1,2\}^{\times 3!=6}$
c

$\overline{\boldsymbol{x}}$	$\mathbf{0}$	$\frac{\mathbf{1}}{\mathbf{3}}$	$\frac{\mathbf{2}}{\mathbf{3}}$	$\mathbf{1}$	$\frac{\mathbf{4}}{\mathbf{3}}$	$\frac{\mathbf{5}}{\mathbf{3}}$	$\mathbf{2}$
$\mathrm{P}(\bar{X}=\bar{x})$	$\frac{8}{125}$	$\frac{12}{125}$	$\frac{30}{125}$	$\frac{25}{125}$	$\frac{30}{125}$	$\frac{12}{125}$	$\frac{8}{125}$

d $\mathrm{E}(\bar{X})=1$ (by symmetry) $(=\mu)$

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =0+\frac{1}{9} \times \frac{12}{125}+\frac{4}{9} \times \frac{30}{125}+\cdots+4 \times \frac{8}{125}-1^{2} \\
& =\frac{4}{15}
\end{aligned} \quad\left(=\frac{\sigma^{2}}{3}\right)
$$

e

\boldsymbol{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathrm{P}(N=n)$	$\frac{44}{125}$	$\frac{37}{125}$	$\frac{44}{125}$

e.g. $\mathrm{P}(N=2)$ is cases
$\{2,2,2\} ;\{2,2,0\} ;\{2,2,1\}$
f $\mathrm{E}(N)=1$ (by symmetry)

$$
\operatorname{Var}(N)=0+1^{2} \times \frac{37}{125}+2^{2} \times \frac{44}{125}-1^{2}=\frac{88}{125} \quad\left(=\sigma^{2}\right)
$$

g $\because \mathrm{E}(N)=1=\mu \therefore N$ is an unbiased estimator of μ.

Statistics 3

17 h $\because \operatorname{Var}(\bar{X})<\operatorname{Var}(N)$ choose \bar{X}

Challenge

a Starting with the given equation, we find that
$\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
$=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right)$
Now we split the summation as well as noting that \bar{x} is constant and so can be pulled out of the summation
$\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-2 \bar{x} \sum_{i=1}^{n} x_{i}+\bar{x}^{2} \sum_{i=1}^{n} 1\right)$.
We now note that $\sum_{i=1}^{n} x_{i}=n \bar{x}$ and $\sum_{i=1}^{n} 1=n$ then substitute into the above expression to obtain
$\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-2 n \bar{x}^{2}+n \bar{x}^{2}\right)$
$=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)$.
b $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

$$
=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)
$$

from the result in part \mathbf{a}.
We want to show that $E\left(s^{2}\right)=\sigma^{2}$.

$$
\begin{aligned}
E\left(s^{2}\right) & =E\left(\frac{1}{n-1}\left(\sum_{i=1}^{n} X^{2}-n \bar{X}^{2}\right)\right) \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} E\left(X^{2}\right)-E\left(n \bar{X}^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n E\left(X^{2}\right)-n E\left(\bar{X}^{2}\right)\right) .
\end{aligned}
$$

We should recognise that $E\left(X^{2}\right)$ is part of the formula
$\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$
which can be rewritten as
$\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$
and we can rearrange for a more useful expression $E\left(X^{2}\right)=\sigma^{2}+\mu^{2}$.

Now we deal with the $E\left(\bar{X}^{2}\right)$ in the same way and find that
$\operatorname{Var}(\bar{X})=E\left(\bar{X}^{2}\right)-E(\bar{X})^{2}$
which is rewritten
$\frac{\sigma^{2}}{n}=E\left(\bar{X}^{2}\right)-\mu^{2}$
and we now rearrange to get
$E\left(\bar{X}^{2}\right)=\frac{\sigma^{2}}{n}+\mu^{2}$.
Now that we have useful expressions for $E\left(X^{2}\right)$ and $E\left(\bar{X}^{2}\right)$, we substitute back into the original expression to obtain

$$
\begin{aligned}
E\left(s^{2}\right) & =\frac{1}{n-1}\left(n E\left(X^{2}\right)-n E\left(\bar{X}^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n\left(\sigma^{2}+\mu^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n \sigma^{2}+n \mu^{2}-\sigma^{2}-n \mu^{2}\right) \\
& =\sigma^{2} .
\end{aligned}
$$

Thus the statistic s^{2} is an unbiased estimator of the population variance σ^{2}.

